A Mixed Uncertainty Quantification Approach Using Evidence Theory and Stochastic Expansions
نویسندگان
چکیده
Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties to the response measure of interest in experimental and computational models. The input uncertainties in computational models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which arises from lack of knowledge. Previously, it has been shown that Dempster Shafer theory of evidence (DSTE) can be applied to model epistemic uncertainty in case of uncertainty information coming from multiple sources. The objective of this paper is to model and propagate mixed uncertainty (aleatory and epistemic) using DSTE. In specific, the aleatory variables are modeled as Dempster Shafer structures by discretizing them into sets of intervals according to their respective probability distributions. In order to avoid excessive computational cost associated with large scale applications, a stochastic response surface based on point-collocation non-intrusive polynomial chaos has been implemented as the surrogate model for the response. A convergence study for accurate representation of aleatory uncertainty in terms of minimum number of subintervals required is presented. The mixed UQ approach is demonstrated on a numerical example and high fidelity computational fluid dynamics study of transonic flow over RAE 2822 airfoil.
منابع مشابه
Quantitative evaluation of software security: an approach based on UML/SecAM and evidence theory
Quantitative and model-based prediction of security in the architecture design stage facilitates early detection of design faults hence reducing modification costs in subsequent stages of software life cycle. However, an important question arises with respect to the accuracy of input parameters. In practice, security parameters can rarely be estimated accurately due to the lack of sufficient kn...
متن کاملpolynomial chaos expansions KEVIN
Submitted for the MAR13 Meeting of The American Physical Society Simulation of stochastic quantum systems using polynomial chaos expansions KEVIN YOUNG, MATTHEW GRACE, Sandia National Laboratories — We present an approach to the simulation of quantum systems driven by classical stochastic processes that is based on the polynomial chaos expansion, a well-known technique in the field of uncertain...
متن کاملEfficient Algorithms for Mixed Aleatory-Epistemic Uncertainty Quantification with Application to Radiation-Hardened Electronics Part I: Algorithms and Benchmark Results
This report documents the results of an FY09 ASC V&V Methods level 2 milestone demonstrating new algorithmic capabilities for mixed aleatory-epistemic uncertainty quantification. Through the combination of stochastic expansions for computing aleatory statistics and interval optimization for computing epistemic bounds, mixed uncertainty analysis studies are shown to be more accurate and efficien...
متن کاملSensitivity and Uncertainty Quantification of Random Distributed Parameter Systems
As simulation continues to replace experimentation in the design cycle, the need to quantify uncertainty in model parameters and its effect on simulation results becomes critical. While intelligent sampling methods, such as sparse grid collocation, have expanded the class of random systems that can be simulated with uncertainty quantification, the statistical characterization of the model param...
متن کاملA Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015